
Mission Data System

of theof the
Mission Data SystemMission Data System

♦

Bob Rasmussen, chief architect
Dan Dvorak, deputy architect

August 6, 2002

Mission Data System

August 6, 2002 2

Outline
• Overview

• Motivations, vision, themes

• A Virtual Tour
• A balloon ride down into the depths of MDS

• State Analysis Process
• Questions and answers about how things work

• MDS Implementation Status

• Questions & answers

Mission Data System

August 6, 2002 3

Challenging Future Missions

• In situ exploration
•Multi-vehicle coordination
•More complex observatories
•An interplanetary network

Mission Data System

August 6, 2002 4

Pressures for Autonomy

•Uncertain environments
•Opportunistic observations
•More severe constraints

Mission Data System

August 6, 2002 5

More Complex Tasks

• Interact with and alter the
environment

•Alter plans to achieve
objectives

•Coordinate multiple
competing activities

•Manage resources
• intelligently screen data

before transmission

Mission Data System

August 6, 2002 6

Meeting These Needs Will Be Difficult

Mission Data System

August 6, 2002 7

Historical Gaps

•Between expressing what operators want
and expressing how to get it

•Between flight and ground software developments
•Between missions in inheritance of flight software
•Between ground generated time-based sequencing

and fault tolerance
•Between systems and software engineering

Mission Data System

August 6, 2002 8

Pressures for Change

•New era of more frequent launches
•Demands for lower cost
•Specter of mission-ending failures

due to errors in software
•Success must be assured,

despite large uncertainties

No

Mission Data System

August 6, 2002 9

What We Need

•Highly reusable core software for flight, ground, and test
•Synergistic systems & software engineering
•Reduced development time and cost
• Improved development processes
•Highly reliable operations
• Increased autonomy

Yes

Mission Data System

August 6, 2002 10

The MDS Vision
A unified control architecture and methods

for flight, ground, and test systems
that enable missions

requiring reliable, advanced software

Mission Data System

August 6, 2002 11

What is MDS … Really?

•An architecture, unifying flight, ground, & test systems
•An orderly systems engineering methodology
•Software frameworks (C++ and Java)
•Processes, tools,

and documentation
•Working examples

of adaptation
•Reusable software

components

Mission Data System

August 6, 2002 12

Achieving the Vision

•MDS project started in 1998
• Initial focus on analysis and prototyping
• Full implementation initiated in 2001
•Design and implementation of core

frameworks near completion —
continuing updates

•Current focus on maturation through
application to real systems

•Running on Rocky 7 and FIDO rovers
•Baselined for Mars Smart Lander

project

Mission Data System

August 6, 2002 13

MDS Themes

•Construct subsystems from architectural elements,
not the other way around

•Some things go together — others do not
•Be explicit (use goals, models, …)
•Close the loop
• Think ahead

A unified approach to managing interactions is essential

Mission Data System

August 6, 2002 14

A State-Based Approach

• Formally recognize state as the
key system concept

• Make state the central
organizing theme for most
functions

• Express all knowledge in
models of state

• Share a common definition
of system state among models

Estimation

Estimation

StateStateStateStateMeasurementsMeasurements
Fault Detection

Fault Detection

Simulation

Simulation

Events
Events

Pa
ra

m
et

er
s

Pa
ra

m
et

er
s

Go
al

s
Go

al
s

Visualization
Visualization

Planning
Planning

Archiving

Archiving

SequencingSequencing

Telemetry

Telemetry

Mission Data System

August 6, 2002 15

A Component-Based Approach

• The State Architecture establishes the elements of
functionality, but not the software design

• The Component Architecture establishes the
elements of software design

• Issues are raised to the level
of symbolic realization
• Software is organized

as components
• State-based elements are

realized as components
• Complexity of interactions is

managed at the component level

Connector

Component

Mission Data System

August 6, 2002 16

Complementary Approaches

Component-Based
Architecture

• Handles interactions
among elements
of the system software

• Inward looking
• Addresses software

engineering issues

State-Based
Architecture

• Handles interactions
among elements
of the system under control

• Outward looking
• Addresses systems

engineering issues

Mission Data System

A Virtual TourA Virtual Tour
Descending into a MDSDescending into a MDS--based systembased system

Mission Data System

August 6, 2002 18

25 Missions in Next 10 Years

A-3 Next: MFRM

Mission Data System

August 6, 2002 19

JPL

Mars Future Rover Mission
(MFRM)

MDS
Inside

A-4 Next: inside

Mission Data System

August 6, 2002 20

Inside Mission MFRM
JPL

MFRM<<deployment>>

Rover
<<deployment>>

Lander

<<deployment>>

Ground
UML notation

for deployments

A-5 Next: Lander

Mission Data System

August 6, 2002 21

Inside Lander
JPL

<<discipline>>

Data Products

<<discipline>>

Data Products
<<discipline>>

Science

<<discipline>>

Science

MFRM
Lander

<<discipline>>

GNC

<<discipline>>

GNC
<<discipline>>

Thermal

<<discipline>>

Thermal
<<discipline>>

Power

<<discipline>>

Power

<<discipline>>

Avionics

<<discipline>>

Avionics
<<discipline>>

Pyro

<<discipline>>

Pyro
<<discipline>>

Telecom

<<discipline>>

Telecom

A-6 Next: Thermal

Mission Data System

August 6, 2002 22

Inside Thermal, Depth 1

Thermal
- depth 1

JPL

MFRM
Lander

UML notation
for component connection

A-7 Next: closer

Mission Data System

August 6, 2002 23

Inside Thermal, depth 2
JPL

MFRM

commands, statusmeasurements

<<controller>>

Camera Temperature
Controller

<<state variable>>

Camera Temperature
State Variable

<<hardware proxy>>

Camera
Hardware Proxy

<<estimator>>

Camera Temperature
Estimator

<<state variable>>

Camera Temperature Sensor
Health State Variable

goals

Lander
Thermal
- depth 1
- depth 2

state
estimatesestimate functions

UML notation
for component

A-8 Next: state architecture

Mission Data System

August 6, 2002 24

Outside a State Variable
JPL

MFRM
Lander

Thermal
- depth 1
-depth 2

state var
-outside

Camera
Temperature
State Variable

State query

UML notation
for interfaces

State update

Notification

Policy control

UML notation
for component

Direction of call

A-10 Next: query interface

Mission Data System

August 6, 2002 25

Looking at an Interface
JPL

MFRM
Lander

Thermal
- depth 1
- depth 2

state var
-outside

-interface<<interface>>
State Query Interface

getState(const Epoch& time): RefCountPtr<const EstimateType>

<<interface>>
State Query Interface

getState(const Epoch& time): RefCountPtr<const EstimateType>

EstimateType

Return type

UML notation for
an interface class

Template argument

EpochEpoch

Operation

Arguments

RefCountPtrRefCountPtr

A-11 Next: inside SV

Mission Data System

August 6, 2002 26

Inside a State Variable
A timeline represents a state variable’s

value as a function of time
JPL

MFRM
Lander

Thermal
- depth 1
- depth 2

state var
-outside

-interface
-inside

Don’t
Know

Don’t
CareOFF

ON
OFF

ON
OFF

ON
OFF

ON

Past Future

time

Now

continuous-valued variable

discrete-valued variable

Estimates states
(knowledge) Planned states

(intent)

A-12 Next: back to Thermal

Mission Data System

August 6, 2002 27

Inside Thermal, depth 2
JPL

commands, statusmeasurements

<<controller>>

Camera Temperature
Controller

<<state variable>>

Camera Temperature
State Variable

<<hardware proxy>>

Camera
Hardware Proxy

<<estimator>>

Camera Temperature
Estimator

<<state variable>>

Camera Temperature Sensor
Health State Variable

goals

MFRM
Lander
Thermal
- depth 1
- depth 2

state
estimatesestimate functions

A-13 Next: goal

Mission Data System

State Analysis State Analysis

A gradual, methodical discovery process …

… that systems engineers use …

… to ask and answer questions about how things work

Mission Data System

August 6, 2002 29

State Analysis is Recursive

• It is a gradual discovery process, prompted by a
standard set of basic questions
• The answer to each question is a piece of the model

• Each answer prompts additional questions, and so on
• The model unfolds a step at a time in terms of common framework

elements until all the pieces are identified

?

m

m
m

?

m

m
m

?
m

?

?

?

?

?

?

m

m

m

question model

Mission Data System

August 6, 2002 30

State Variables
Understanding the System in Terms of State

Define a
State Variable

What other states
are involved?Do other states affect it?

Model an
Effect

Each model element
gets at least a name
and a description.

Most have several
other characteristics
and links to other
elements that must be
described.

Each model element
gets at least a name
and a description.

Most have several
other characteristics
and links to other
elements that must be
described.

•Start with a few key states
• Look at their behaviors
• Ask how and why they change

•Revisit this for every new state variable
that is identified

Mission Data System

August 6, 2002 31

Spacecraft States

• Dynamics
• Vehicle position & attitude, gimbal angles, wheel rotation, …

• Environment
• Ephemeris, light level, atmospheric profiles, terrain, …

• Device status
• Configuration, temperature, operating modes, failure modes, …

• Parameters
• Mass properties, scale factors, biases, alignments, noise levels, …

• Resources
• Power & energy, propellant, data storage, bandwidth, …

• Data product collections
• Science data, measurement sets, …

• DM/DT Policies
• Compression/deletion, transport priority, …

• Externally controlled factors
• Space link schedule & configuration, …

… and so on

Mission Data System

August 6, 2002 32

Spacecraft Models

• Relationships among states
• Power varies with solar incidence angle, temperature, & occultation

• Relationships between measurement values and states
• Temperature data depends on temperature, but also on calibration parameters and

transducer health
• Relationships between command values and states

• It can take up to half a second from commanding a switch to full on
• Sequential state machines

• Some sequences of valve operations are okay; others are not
• Dynamical state models

• Accelerating to a turn rate takes time
• Inference rules

• If there has been no communication from the ground
in a week, assume something in the uplink has failed

• Conditional behaviors
• Pointing performance can’t be maintained until rates are low

• Compatibility rules
• Reaction wheel momentum cannot be dumped while being used for control

… and so on

Mission Data System

August 6, 2002 33

State Value Histories
Reporting What’s Happening in Terms of State

• Choose carefully how each
state will be expressed
• This is driven by need
• Uncertainty must be part of the

definition

• Value histories maintain state
values as functions of time
• They record the past
• They may also predict the future
• They are transported across space

links to report what is happening

• Policies guide the treatment of
this data
• This includes converting it into new

forms

Define a
State Variable

How should the state
be represented?

Define
State Functions

How should state
be managed & transported?

Define a
Policy

Mission Data System

August 6, 2002 34

Sensors (Input Devices)

• Measurement models describe
how measurement data is
related to state
• Usually sensors measure many

more states,
in addition to the ones intended

• Newly identified states prompt
more questions

• Measurements are also kept in
value histories

Can it be measured?

Define a
Sensor

What measurements does
it produce?

Model a
Measurement

What other states does it
measure?

Define a
Policy

Define a
State Variable

How should measurements
be managed & transported?

Mission Data System

August 6, 2002 35

Actuators (Output Devices)

• Command models describe
changes to state
• Often commands affect other

states, in addition to the ones
intended

• Newly identified states prompt
more questions

• Commands are also kept in
value histories

Can it be directly
commanded?

Define an
Actuator

What commands does it
accept?

Model a
Command

What other states does it
affect?

Define a
Policy

Define a
State Variable

How should commands
be managed & transported?

Mission Data System

August 6, 2002 36

Hardware Adapters

•Sensors and actuators are input and output ports,
respectively on hardware adapters
• Hardware adapters handle all communication with the hardware
• They may also augment hardware capabilities with various low level

services

•Collectively, these hardware and service functions
present architecturally uniform sensor and actuator
ports to the rest of the software

Define an
ActuatorDefine a Sensor

Define a H/W
Adapter

Mission Data System

August 6, 2002 37

State Determination
Monitoring the System and Its Own Actions to Determine State

Model a
Measurement

Define a
State Variable

Define an
Estimator

Model a
Command

Model an
Effect

How well must the state
be known?

Define a
Knowledge Goal

How should state
knowledge be updated?

How will this be achieved?

• Models suggest how states
should be estimated
• Estimators often use models

directly
• You may identify multiple ways to

know a state, depending on
circumstances and need

• Estimators are “goal achievers”

Mission Data System

August 6, 2002 38

State Control
Acting on the System to Control Its State

Define a
State Variable

Define a
Controller

Model a
Command

Define a
Control Goal

How will this be achieved?

• Controllers are also “goal achievers”

Model an
Effect

How must the state be
controlled?

• Models can also
suggest how states
should be controlled
• Controllers often use

models directly
• There are usually several

ways to control a state

Mission Data System

August 6, 2002 39

Elaboration
Expressing Intention in Terms of Desired State

Define a
State Variable

What other states does
this state affect?

Define a
Goal

Model an
Effect

What other states can be
used to change this state?

How should related states
be controlled?

How should side effects
be allocated?

Are all needed goals
defined?

Define an
Elaboration

• When states can’t be commanded directly, control other states that
affect them instead — and don’t forget to allocate side effects
• Elaboration identifies new goals, and so on

Mission Data System

August 6, 2002 40

Constraint Networks

• Goals elaborate recursively into constraint networks
• These are scheduled across state timelines, describing a scenario

Goal

GoalGoal

Goal

Goal

Time

Goal

State 1

GoalState 2

Goal

Goal

GoalGoal

Mission Data System

August 6, 2002 41

Following Leads — An Example

Standard Questions:

?
?

m
m

m

?

m

m

m
?

?

m

m

?

?

?

m

m

m

m
?

?
?

m

?

Common Framework
Elements:

What do you want to achieve?
GoalMove rover to rock

What’s the state to be controlled?
State VariableRover position relative to rock

What evidence is there for that state?
MeasurementsIMU, wheel rotations,

sun sensor, stereo camera

What does the stereo camera measure?
Measurement
Model

Distance to terrain features,
light level, camera power
(ON/OFF), camera health

How do you raise the light level?
State Effects ModelWait until the sun is up

Where is sun relative to horizon?
Etc.…

Mission Data System

August 6, 2002 42

State Database Server
A Tool for State Analysis

Screen display of
browser during
state analysis

Mission Data System

SummarySummary

Mission Data System

August 6, 2002 44

Inside Thermal, depth 2
JPL

commands, statusmeasurements

<<controller>>

Camera Temperature
Controller

<<state variable>>

Camera Temperature
State Variable

<<hardware proxy>>

Camera
Hardware Proxy

<<estimator>>

Camera Temperature
Estimator

<<state variable>>

Camera Temperature Sensor
Health State Variable

goals

MFRM
Lander
Thermal
- depth 1
- depth 2

state
estimatesestimate functions

A-13 Next: goal

Mission Data System

August 6, 2002 45

Camera Temperature Goal
JPL

MFRM
Lander

Thermal
- depth 1
- depth 2

Goal

Adaptation

Camera Temperature Goal

camera temperature

between 280oK and 290oK

from 2008-05-15T18:00:00ET

until 2008-05-15T19:00:00ET

state variable

state constraint

start time

end time

Framework

Goal

Epoch

State Constraint

State Variable

start
end

A-14, click Next: ascending to Goal Net package

Mission Data System

August 6, 2002 46

A Framework Package
JPL

MFRM
Lander
Thermal

Goal Net

Goal Net

NetworkTree GoalTree

GoalStatus GoalNet

GoalElaborator

Goal

Tactic

TemporalConstraint

XGoal

TimePoint

...

A-15 Next: ascending to Thermal

Mission Data System

August 6, 2002 47

Inside Thermal
JPL

Camera Temperature
Controller

Camera Temperature
State Variable

Camera
Hardware Proxy

Camera Temperature
Estimator

Camera Temperature Sensor
Health State Variable

VH

VHVH

VHVH

SI

SI SI

SI

Cmp

CmpCmp

CmpCmp

Ep

EpEp

EpEp

...

......

......

MFRM
Lander
Thermal

A-16 Next: ascending to Lander

Mission Data System

August 6, 2002 48

Inside Lander
JPL

ScienceScience

GNCGNC

PyroPyro

PowerPower

AvionicsAvionics

ThermalThermal

TelecomTelecom

Data ProductsData Products
SV SV

SVSVSV

SV SV SV

Est Est

EstEstEst

Est Est Est

Con Con

ConConCon

Con Con Con

HwP HwP

HwPHwPHwP

HwP HwP HwP

... ...

.........

...

MFRM
Lander

A-17 Next: ascending to MFRM

Mission Data System

August 6, 2002 49

Inside Mission MFRM
JPL

Lander

Ground

Rover MFRM

A-18 Next: summary

Mission Data System

August 6, 2002 50

25 Missions in Next 10 Years

A-19 Next: outreach presentations

Mission Data System

August 6, 2002 51

MDS State/Model Architecture

Estimators interpret
measurement and
command evidence to
estimate state

Controllers issue
commands, striving
to achieve goals

Hardware proxies provide
access to hardware busses,
devices, instruments

Models express mission-
specific relations among
states, commands, and
measurements

A goal is a constraint on the
values of a state variable
over a time interval

State variables hold
state values, including
degree of uncertainty

Mission Data System

August 6, 2002 52

Advantages of State Analysis

•Captures thorough, unambiguous requirements
•Guides a clear work breakdown
•Aids collection of metrics
• Fosters a robust design approach
•Aids cross-checking for coverage and consistency
•Serves as an integration tool at many levels
• Improves inspectability and testability
•Enables principled coordination of the system
• Facilitates increasing autonomy
•Assures greater reusability

Mission Data System

August 6, 2002 53

Needs Addressed by MDS

Operations
– Reduced overhead for routine

operations
– Greater robustness — focus on what

to do, not how to do it
Technologists

– More direct path to flight — narrows
the TRL gap

– Easier integration with other
technologies via standard
architecture

Scientists
– Enables more complex missions with

autonomy
– Reactive, intelligent data collection

and processing
Line managers

– A place to capture institutional
experience and knowledge

– Keep a competitive edge

Program Managers
– Continuity across projects
– Investments lead to savings

Project Managers
– Better cost estimates — greater cost

control
– More reliable, efficient, and better

understood systems
Systems Engineers

– Disciplined and thorough
methodology for design

– Easy communication with software
engineers — more timely, explicit,
complete, and testable requirements

Software Engineers
– Strong formal architecture —

“A place for everything, and
everything in its place”

– Investment in new design, instead of
rehashing old design

Mission Data System

Questions?Questions?

Mission Data System

“Observations” Slides“Observations” Slides
••The following slides are to be shown on a second projector, The following slides are to be shown on a second projector,
concurrently with parts of the virtual tourconcurrently with parts of the virtual tour
•To synchronize the two screens, match the ‘B’ number with the
‘A’ number

Mission Data System

August 6, 2002 57

MDS Virtual Tour

• Watch for:
• architecture
• frameworks
• design patterns
• object-oriented design
• adaptations
• MDS terminology (in red)
• UML‡ terminology (in blue)

• Observations about the
sights below will appear here

• Our “altitude” appears here
‡ UML: “a language for visualizing, specifying, constructing and

documenting the artifacts of a software intensive system

JPL

B-3,4

Mission Data System

August 6, 2002 58

Observations

•A “deployment” is:
• an executable hosted on specific hardware
• a node in an interplanetary network

•Ground ⌦ Lander and Lander ⌦ Rover
communication handled uniformly

• “Products” flow in both directions
• value histories for samples and intervals
• goals for operation

• Protocols:
• standard CCSDS protocols, currently
• internet protocols, future
• architecture allows any protocol as a plug-in

B-5

Mission Data System

August 6, 2002 59

Observations

• A “discipline” is an area of expertise that builds
software assets, sometimes a full subsystem

• Discipline-specific software is organized into
“packages” (general-purpose grouping/organizing)

• MDS provides “frameworks” from which
subsystems are built
• shared problems, shared solutions

• planning, control, telemetry, storage, ...

• subsystems leverage framework software

• “A framework is an architectural pattern that provides an extensible
template for applications within a domain.”

B-6

Mission Data System

August 6, 2002 60

Observations
• The system — and its subsystems —

is composed of “components”

• A component:
– is a piece of functionality
– is the unit of distribution & assembly
– interacts with other components only thru connectors

• Components:
– enable an architectural description
– eliminate hidden “usage” relations
– moves coordination/synchronization complexity

into connectors

B-7

Mission Data System

August 6, 2002 61

Observations

• Kinds of components:
• hardware proxies
• controllers
• estimators
• state variables

• Each kind plays a specific role:
• hardware proxies provide access to hardware
• controllers strive to achieve goals on state
• estimators interpret evidence to form estimates of state knowledge
• state variables hold state knowledge

B-8

Mission Data System

August 6, 2002 62

Observation: State is Central

Estimation

Estimation

StateStateStateStateMeasurementsMeasurements
Fault Detection

Fault Detection

Simulation

Simulation

Events
Events

Pa
ra

m
et

er
s

Pa
ra

m
et

er
s

Go
al

s
Go

al
s

Visualization
Visualization

Planning
Planning

Archiving

Archiving

SequencingSequencing

Telemetry

Telemetry

State is a central concept in many
mission activities

The function of mission software
is to monitor and control a
system to meet operators’ intents

Knowledge of the system is
represented over time in
state variables

Operators’ intent, including
flight rules and constraints,
are expressed as goals
on system states

B-9a

“State Flower”, Robert Rasmussen, 1999.

Mission Data System

August 6, 2002 63

Observations

• Estimation is separated from control
• distinct roles
• ensures consistent state seen by all
• code easier to write, easier to test
• components are more reusable

• Real-time closed-loop control systems are
composed from such components

• Controllers are goal-driven

B-9b

Mission Data System

August 6, 2002 64

Observations

•All interactions with a state variable
takes place through its interfaces
• “An interface is a collection of operations that are used to specify a

service of a class or component”

• Interface definitions are the end product of a lot of
design thought
• pre-tested for adequacy
• pre-integrated with other components

• For each interface of a component:
• some are called from outside (e.g. state query)
• some are called from inside (e.g. notification)

B-10

Mission Data System

August 6, 2002 65

Observations

•An interface defines one or more operations on a
component

• “Smart pointers” reduce problems of object
ownership and memory leaks

•Scalar quantities, such as temperature, use the “SI
units” package
• not just type-safe, but also unit-safe
• checked at compile time, not runtime

Naked
Numbers

B-11

Mission Data System

August 6, 2002 66

Observations

•Timelines hold past, present and future
• Estimate functions describe

how state evolved up until ‘now’

• Goals describe how operators intend
for state to evolve in future

•Timeline is stored in a “value history”

•Data management “policies” control:
• when to checkpoint
• what to transport
• when to compress
• how much to recover upon restart

B-12

Mission Data System

August 6, 2002 67

Observations

•We’re back in Thermal subsystem

• Recall: controllers strive to achieve goals

• Let’s look at a goal on camera temperature state

B-13

Mission Data System

August 6, 2002 68

Observations

• A goal is a constraint on the value of
a state variable over a time interval

• Goals specify operational intent
• “what”, not “how”
• goals leave options for selecting actions
• goals enable in situ decision-making

• Goals live in a network that defines
parent-child relationships and
temporal ordering relationships.

• Adaptations build upon framework software

Definition

B-14

Mission Data System

August 6, 2002 69

Observations

Package • A package organizes multiple
classes

• A class defines data and
functions

Class
attributes (data members)
operations (member functions)

B-15

Mission Data System

August 6, 2002 70

Observations

Component
• A component uses multiple

packages

• A package organizes multiple
classes

• A class defines data and
functions

Package

Class
attributes (data members)
operations (member functions)

B-16

Mission Data System

August 6, 2002 71

Observations

<<discipline>> • A discipline builds upon
components and other s/w

• A component uses multiple
packages

• A package organizes multiple
classes

• A class defines data and
functions

Component

Package

Class
attributes (data members)
operations (member functions)

B-17

Mission Data System

August 6, 2002 72

Observations

• A deployment builds upon
multiple disciplines

• A discipline builds upon
components and other s/w

• A component uses multiple
packages

• A package organizes multiple
classes

• A class defines data and
functions

Deployment

<<discipline>>

Component

Package

Class
attributes (data members)
operations (member functions)

B-18 Next: summary

Mission Data System

Backup SlidesBackup Slides

Mission Data System

August 6, 2002 74

Math Library
-Linear algebra
-Probability dist.
-Polynomials
-6-DOF classes

Sequential
Estimation

Exception
Classes

Standard
Utility classes

Initialization &
Finalization

Components &
Connectors

Data Catalog
-collection, entry, event
-data product

Value History
-sampled history
-time-interval history

Data Transport
-sender, receiver
-session, request

State Knowledge
-state variable
-state value

Goal Achiever:
-estimator, controller
-Measurement, command

Hardware
Proxy

Goal
Network

Goal Elaboration
Language

Graph State
Variable

State
Query

Data
Visualization

Simulation Component
Scheduler

Graph
Library

Physics Library:
-SI Units
-Coordinate systems
-Position, velocity &
acceleration

MDS Framework Packages
Application Services

Level 5

State Services
Level 4

Complex Services
Level 3

Simple Services
Level 2

Embedded web
Server & client

Event Log
Facility

Data Mgmt
Policy

CCSDS File
Delivery Protocol

Naming
Services

Time
Services

Data
Serialization

Primitive Services
Level 1

OS Services
Level 0

C++ Standard
Library

Unit Testing
Package

Adaptive Communication
Environment

Real Time
Operating System

	of theMission Data System
	Outline
	Challenging Future Missions
	Pressures for Autonomy
	More Complex Tasks
	Meeting These Needs Will Be Difficult
	Historical Gaps
	Pressures for Change
	What We Need
	The MDS Vision
	What is MDS … Really?
	Achieving the Vision
	MDS Themes
	A State-Based Approach
	A Component-Based Approach
	Complementary Approaches
	A Virtual TourDescending into a MDS-based system
	25 Missions in Next 10 Years
	
	Inside Mission MFRM
	Inside Lander
	Inside Thermal, Depth 1
	Inside Thermal, depth 2
	Outside a State Variable
	Looking at an Interface
	Inside a State Variable
	Inside Thermal, depth 2
	State Analysis
	State Analysis is Recursive
	State VariablesUnderstanding the System in Terms of State
	Spacecraft States
	Spacecraft Models
	State Value HistoriesReporting What’s Happening in Terms of State
	Sensors (Input Devices)
	Actuators (Output Devices)
	Hardware Adapters
	State DeterminationMonitoring the System and Its Own Actions to Determine State
	State ControlActing on the System to Control Its State
	ElaborationExpressing Intention in Terms of Desired State
	Constraint Networks
	Following Leads — An Example
	State Database ServerA Tool for State Analysis
	Summary
	Inside Thermal, depth 2
	Camera Temperature Goal
	A Framework Package
	Inside Thermal
	Inside Lander
	Inside Mission MFRM
	25 Missions in Next 10 Years
	MDS State/Model Architecture
	Advantages of State Analysis
	Needs Addressed by MDS
	Questions?
	“Observations” Slides
	MDS Virtual Tour
	Observations
	Observations
	Observations
	Observations
	Observation: State is Central
	Observations
	Observations
	Observations
	Observations
	Observations
	Observations
	Observations
	Observations
	Observations
	Observations
	Backup Slides
	MDS Framework Packages

